обратное отношение - significado y definición. Qué es обратное отношение
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es обратное отношение - definición

ПОДМНОЖЕСТВО ДЕКАРТОВА ПРОИЗВЕДЕНИЯ МНОЖЕСТВ
Отношение (математическая логика); Тернарное отношение; N-арное отношение; Отношения (теория множеств); Универсальное отношение; Нуль-отношение

Гиромагнитное отношение         
ОТНОШЕНИЕ ДИПОЛЬНОГО МАГНИТНОГО МОМЕНТА ЭЛЕМЕНТАРНОЙ ЧАСТИЦЫ К ЕЁ МЕХАНИЧЕСКОМУ МОМЕНТУ
Гиромагнитное Отношение; Магнитомеханическое отношение

отношение магнитного момента атомных частиц (электронов, протонов, нейтронов, атомных ядер и т.д.) к их моменту количества движения. Подробнее см. Магнитомеханическое отношение.

Двойное отношение         
Сложное отношение; Ангармоническое отношение
(сложное, или ангармоническое)

четырёх точек M1, M2, Мз, M4 на прямой (рис. 1), число, обозначаемое символом (M1M2M3M4) и равное

При этом отношение M1M3/M3M2 считается положительным, если направления отрезков M1M3 и M3M2 совпадают, и - отрицательным при различных направлениях. Д. о. зависит от порядка нумерации точек, который может отличаться от порядка следования точек на прямой. Наряду с Д. о. четырёх точек, рассматривается Д. о. четырёх прямых, проходящих через точку О. Это отношение обозначается символом (m1m2m3m4). Оно равно

причём угол (mi mj) между прямыми mi и mj) рассматривается со знаком.

Если точки M1, M2, Мз, M4 лежат на прямых m1, m2, m3, m4 (рис. 1), то

(M1M2M3M4) = (m1m2m3m4),

поэтому, если точки M1, M2, Мз, M4 и M'1, M2', Мз', M4' получены пересечением одной четвёрки прямых m1, m2, m3, m4 (рис. 1), то (M1', M2', Мз', M4') = (M1M2M3M4).

Если же прямые m1, m2, m3, m4 и m1', m2', mз', m4' проектируют одну четвёрку точек M1, M2, Мз, M4 (рис. 2), то (m1' m2' mз' m4') = (m1m2m3m4).

Д. о. не меняется также и при любых проективных преобразованиях (См. Проективное преобразование), т. е. является инвариантом (См. Инварианты) таких преобразований, и поэтому Д. о. играют важную роль в проективной геометрии (См. Проективная геометрия). Особенно важную роль играют четвёрки точек и прямых, для которых Д. о. равно - 1. Такие четвёрки называют гармоническими (см. Гармоническое расположение.).

Э. Г. Позняк.

Рис. 1 к ст. Двойное отношение.

Рис. 2 к ст. Двойное отношение.

Двойное отношение         
Сложное отношение; Ангармоническое отношение
Двойное отношение (или сложное отношение или устаревшее ангармоническое отношение) четвёрки чисел a, b, c, d (вещественных или комплексных) определяется как

Wikipedia

Отношение (теория множеств)

Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.

Понятие отношения как подмножества декартова произведения формализовано в теории множеств и получило широкое распространение в языке математики во всех её ветвях. Теоретико-множественный взгляд на отношение характеризует его с точки зрения объёма — какими комбинациями элементов оно наполнено; содержательный подход рассматривается в математической логике, где отношение — пропозициональная функция, то есть выражение с неопределёнными переменными, подстановка конкретных значений для которых делает его истинным или ложным. Важную роль отношения играют в универсальной алгебре, где базовый объект изучения раздела — множество с произвольным набором операций и отношений. Одно из самых ярких применений техники математических отношений в приложениях — реляционные системы управления базами данных, методологически основанные на формальной алгебре отношений.

Отношения обычно классифицируются по количеству связываемых объектов (арность) и собственным свойствам, таким как симметричность, транзитивность, рефлексивность.

Ejemplos de uso de обратное отношение
1. А вот федеральный центр, очевидно, демонстрирует обратное отношение к реформе управления.
2. Однако на деле происходит обратное - отношение блюстителей порядка с трудовыми мигрантами принимает все более бесчеловечный и жестокий характер, свидетельством чего является эта трагедия" , - заметил К.
¿Qué es Гиромагн<font color="red">и</font>тное отнош<font color="red">е</font>ние? - significado y d